
Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 6, pp. 1023–1028, 2001

OSCILLATIONS OF THE PLASTIC WAVE FRONT UNDER HIGH-RATE LOADING

UDC 539.374Yu. I. Meshcheryakov1 and G. G. Savenkov2

Two models of elastoplastic wave propagation in metals under uniaxial deformation are considered.
The first model treats plastic deformation as being due to dislocation motion during heterogeneous
formation of dislocations. The second model assumes that plastic deformation occurs by motion of
dipoles of partial disclinations. It is shown that in both cases, certain conditions can give rise to
damped oscillations of the plastic wave front, which were detected in shock loading experiments with
flat specimens made of 28Kh3SNMFA steel.

The elastoplastic deformation of metals under shock-wave loading and rapid changes of their defect structure
at the microlevel during shock-wave propagation should be reflected adequately in physical and mathematical models
of material’s behavior. Deformation hardening, relaxation of shear strains, diffusion of rarefaction waves due to
the Baushinger effect, etc., are described primarily by dislocation models [1, 2] and more rarely by disclination [3]
models of relaxation type.

However, a number of experiments on high-rate loading of materials revealed damped oscillations of the
plastic wave front, which are not described by existing models. The procedure of these experiments, based on
recording the motion of the free surface of shock-loaded specimens (disks of 52 mm diameter and 10 mm thickness)
by laser interferometry, is described in detail in a number of papers (see, e.g., [4]).

Damped oscillations were recorded for 28Kh3SNMFA steel under initial impact velocities of V0 = 80, 84,
97.5, 100, 100.6, 130.9, 142.2, 150, 311, 376, and 384 m/sec.

A typical curve of the oscillations is shown in an interferogram (Fig. 1) and an U–t diagram (Fig. 2) for a
sample loaded at an impact velocity of 311 m/sec.

In all cases, the oscillations at the plastic wave front last for not more 0.15–0.3 µsec and arise immediately
after passage of an elastic precursor, which suggests significant structural changes in the metal after passage of the
precursor.

Taking into account modern concepts of the physics of strength and plasticity [5–8], one might expect that
during dynamic loading in this case (with allowance for the degree of alloying of the steel) the heterogeneous
mechanism of dislocation formation is most probable. This mechanism can work both on the elastic precursor and
at the plastic wave front. In addition, if behind the elastic precursor, the dislocation density reaches a critical
value, then some of the dislocations, which were previously distributed chaotically, gather (near those available in
the material) to form finite walls, which, being nuclei of rotational deformation, i.e., dipoles of partial disclinations,
form boundaries of cells (fragments) [7, 8]. Because interaction of dipoles initiates the production of new dipoles by
the already available dipoles of partial disclinations [8], the process of change in internal structure is similar to the
heterogeneous mechanism of dislocation formation. Furthermore, during the structural change, plastic deformation
occurs only by motion of the dipoles.

Let us consider the first version of development of the process with plastic deformation occurring by disloca-
tion motion during heterogeneous dislocation formation and derive the constitutive equation describing elastoplastic
wave propagation under uniaxial deformation.

1Institute of Problems of Engineering Science, Russian Academy of Sciences, St. Petersburg 199004.
2Research-and-Production Plant “Krasnoznamenets,” St. Petersburg 195043. Translated from Prikladnaya
Mekhanika i Tekhnicheskaya Fizika, Vol. 42, No. 6, pp. 117–123, November–December, 2001. Original article
submitted April 10, 2001; revision submitted July 3, 2001.

0021-8944/01/4206-1023 $25.00 c© 2001 Plenum Publishing Corporation 1023



Fig. 1

Fig. 2

A possible mechanism of avalanche generation of dislocations is the so-called kinematic mechanism [9]. This
mechanism assumes that because of the instability of the core, every dislocation moving at a high velocity generates
two new dislocations, one of which continue moving together with the primary dislocation, and the second, opposite
in sign, moves backward. In this mechanism, dislocation multiplication occurs in an avalanche manner, and mobile
dislocations generated by cross slip under the regenerative law can be primary.

For a quantitative consideration of dislocation generation by the mechanism described above, we denote by f
the ratio of the density heterogeneously generated dislocations to the density of mobile dislocations multiplied by
the regenerative mechanism:

f = Nmr/(Nm0 + αγ), (1)

where Nm0 is the initial density of mobile dislocations, α is the dislocation multiplication factor, and γ is the shear
strain. With excess of a certain threshold amplitude of the pulsed pressure, the increment of the quantity f (1)
increases in proportion to the shear strain rate [10]:

df ∼ dγ. (2)

Obviously, the increment (2) of relation (1) should increase in proportion to this ratio f because new
dislocations act as new sources:

df = kf dγ, (3)

where k is the proportionality factor which characterizes the rate of heterogeneous formation of dislocations. Since
heterogeneous multiplication, in contrast to homogeneous multiplication, implies the material contain strain con-
centrators, which produce significant inhomogeneity of the stress field, the factor k should depend on the stress
applied. It is known that with increase in shear stress, the efficiency of stress concentrators reduces, and, therefore,
one might expect that with increase in shear stress, the coefficient k decreases:

k = H1/τ. (4)

Here H1 is a constant and τ is the shear stress.
Integration of Eq. (3) over time taking into account (1) and (4) yields the following dependence for the

density of heterogeneously generated mobile dislocations:

Nmr = Nmp exp (H1γ̇/τ).
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Here Nmp is the density of homogeneously generated dislocations; the dot above the symbol denotes differentiation
with respect to time along the pathway of an element of the medium.

The total density of mobile dislocations due to both multiplication mechanisms is given by

Nm = Nmp +Nmr = Nmp(1 + exp (H1γ̇/τ)). (5)

Since heterogeneous formation of dislocations proceeds in an avalanche manner and at high strain rates, the
unity in (5) can be ignored. As a result, we obtain

Nm = (Nm0 + αγ) exp (H1γ̇/τ). (6)

Besides relation (6), which defines the density of mobile dislocations, we need to obtain the relation between
the dislocation velocity V and the shear strain rate. Many experimental data are well fitted by the exponential
dependence

V = ct exp ((−τ0 +Hγ)/τ), (7)

where ct is the velocity of transverse sound waves, τ0 is the characteristic stress of dislocation deceleration, and
H is the hardening constant of the material, which takes into account the stopping of dislocations by each other at
their high density.

An increase in the mobility of dislocations with increase in strain rate can be allowed for by reducing the
characteristic stress τ0 in a dependence similar to (7). As a result, the dependence of dislocation velocity on strain
and strain rate can be written as

V = ct exp ((−τ0 +H2γ̇)/τ), (8)

where H2 is a proportionality factor. Expression (8) implies that the mobility of dislocations is of a dual nature, i.e.,
it is due to thermal activation and athermic processes. The term τ0, whose temperature dependence was studied in
[11, 12], allows for thermal activation processes, and the term H2γ̇ allows for athermic processes. Substituting (6)
and (8) into the well-known equation for the plastic shear strain rate γ̇ = bNmV (b is the Burgers vector), and then
into the equation for the uniaxial strain state in an elastoplastic material behind the plane shock wave front:

σ − (λ+ 2G)ε = −(8/3)Gγ.

Here λ and G are Lamé’s parameters, σ is the normal stress in the direction of wave propagation, and ε is the total
(elastic and plastic) strain in the wave propagation direction, we obtain the constitutive equation

σ − ρ0c
2ε = −(8/3)Gbct(Nm + αγ) exp ((−τ0 − (H1 +H2)γ̇)/τ), (9)

where c is the longitudinal velocity of sound.
Because an increase in the density of mobile dislocations [see (6)] and an increase in their velocity [see (8)] lead

to an increase in total strain rate and are indistinguishable at the macroscopic level, the sum of the coefficients H1

and H2 in Eq. (9) can be replaced by one coefficient.
Using the relations of uniaxial deformation of an isotropic material

σ − (λ+ 2G)ε = −(8/3)Gγ, (10)

τ = (3/4)(σ − (λ+ (2/3)G)ε), (11)

we can write Eq. (9) in terms of shear and total strain only:

γ̇ = γ∗(1 +Mγ) exp ((−τ∗ −B∗γ̇)/(ε− 2γ)). (12)

Here γ∗ = bctNm0, M = α/Nm0, τ∗ = τ0/G, and B∗ = (H1 +H2)/G.
For uniaxial deformation of an isotropic material, the constitute equation (12) combined with the continuum

dynamics equations

ρ0
∂u1

∂t
+
∂σ11

∂x
= 0,

∂u1

∂x
+
∂ε11

∂t
= 0 (13)

forms a closed system of equations which describe dynamic deformation with allowance for inertial effects. Here
u1 is the rate of motion of material particles in the wave propagation direction x, σ11 is the strain component in
the wave propagation direction, and ε11 is the total (elastic and plastic) strain component in the wave propagation
direction. Below, the subscript 11 at the stress and strain components is omitted, and the subscripts t and x denote
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differentiation with respect to time and coordinate, respectively. Equations (13) can be reduced to the second-order
equation σxx − ρ0εtt = 0, which, using relation (10), can also be expressed in terms of total and shear strains:

εxx − (1/c2)εtt − (8/3)(G/(ρ0c
2))γxx = 0. (14)

From Eq. (12) we express the total strain:

ε = 2γ − τ∗/δ + (B∗γt)δ. (15)

Here δ = ln (γt/(γ∗(1 +Mγ))), and, substituting (15) into (14), we obtain the equation

δ(τ∗ −B∗γt)(δxx − (1/c2)δtt)− 2B∗δ(γxδx − (1/c2)γtδt)− δ2B∗(γtxx − (1/c2)γttt)

− 2(τ∗ −B∗γt)(δ2
x − (1/c2)δt) + δ3((2− (8/3)G/(ρ0c

2))γxx − (1/c2)γtt) = 0. (16)

The solution of Eq. (16) is sought in exponential form

1 +Mγ = Γ(x, t) exp (−K(x− cpt)), (17)

where the preexponent Γ(x, t) is generally a function of the coordinates and time, cp = ω/K is the velocity of the
stationary plastic front, and K is the wave number.

In the particular case of Γ = const, δ is also a constant and Eq. (17) is linearized:

(2− (8/3)G/(ρ0c
2))γxx − (2/c2)γtt − (B∗/δ)(γtxx − (1/c2)γttt) = 0. (18)

Here δ = ln (ω/(γ∗M)) = const.
The partial equation (18) corresponds to the dispersion equation

B∗ω/z = ln (ω/(γ∗M)), (19)

where z = 2(c2r − c2p)/(c2 − c2p) (cr is the volumetric velocity of sound in the medium). In Eq. (19), we expand the
exponent in a series, restricting ourselves to quadratic terms of the expansion. We obtain

ω/(γ∗M) = 1 +B∗ω/z + (1/2)B2
∗ω

2/z2,

whence

ω =
z2

B2
∗

( 1
γ∗M

− B∗
z
±
( z2

B2
∗

( 1
γ∗M

− B∗
z

)
− 2
)1/2)

. (20)

From expression (20) it follows that the quantity ω is real for (z2/B2
∗)(1/(γ∗M)−B∗/z)2 > 2 and complex

for (z2/B2
∗)(1/(γ∗M)−B∗/z) < 2. The condition of existence of complex roots implies that the plastic front has an

oscillation structure, and this condition is satisfied for ((z/B∗)(1/(γ∗M)−B∗/z)− 21/2)((z/B∗)(1/(γ∗M)−B∗/z)
+ 21/2) < 0 in one of the two cases:

(z/B∗)(1/(γ∗M)−B∗/z)− 21/2 < 0, (z/B∗)(1/(γ∗M)−B∗/z) + 21/2 > 0,
(21)

(z/B∗)(1/(γ∗M)−B∗/z)− 21/2 > 0, (z/B∗)(1/(γ∗M)−B∗/z) + 21/2 < 0.

Inequalities (21) are equivalent to the following two conditions imposed on the wave propagation velocity:

c2/(1− 2/(B∗γ∗M(1 + 21/2))) < c2p < c2/(1− 2/(B∗γ∗M(1− 21/2)));

c2/(1− 2/(B∗γ∗M(1− 21/2))) < c2p < c2/(1− 2/(B∗γ∗M(1 + 21/2))). (22)

However, in the elastoplastic flow region, only inequality (22), which defines values of the dislocation param-
eters α, b, H1, and H2 for which the occurrence of oscillations of the plastic wave front is possible.

Let us consider the second version of development of the process in which plastic deformation occurs by
formation and motion of dislocation walls, i.e., by motion of dipoles of partial disclinations. In this case, the rate
of plastic strain due to motion of dipoles is defined by the equation

ε̇ ' 2nω1aVd, (23)

where n, Vd, 2a, and ω1 are the density, mean velocity, reach of arm, and power (Frank vector) of the dipoles.
The density of the dipoles n is determined from the equation for the density of the walls at the moment of

their heterogeneous generation [8]
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dn

dt
= α1N

2
m − βNmn. (24)

Here Nm is the density of mobile dislocations, α1 is the probability of formation of a “nuclei” of a wall during
meeting of two dislocations and its growth up to formation of a complete wall, and β is the probability of collapse
of the wall under the action of an oncoming dislocation.

The velocity of the dipole is determined from the dependence [6]

Vd = −
a∫
−a

V (y)
λ1 ln (1− ω1/(bN1λ1))

dy, (25)

where V (y) is the dislocation velocity in the zone of rotational plasticity y1 6 y 6 y2, y1 and y2 are generally
functions of external stress and the reach of arm a and power of the dipole ω1 (below, we set y1 = −a and y2 = a),
λ1 is the mean free path of dislocations in the zone of rotational plasticity, and N1 is the initial dislocation density
in the zone of rotational plasticity.

Assuming that the function V (y) does not depend on the coordinate y and that λ1 ' a, from Eq. (25) we
obtain

Vd = −V/f1, (26)

where f1 = ln (1− ω/(bN1a)).
Solving Eq. (24) for n and substituting the obtained solution together with the value of Vd from relation (26)

into Eq. (23) and taking into account that ε̇ = −(ü/cp), we obtain

ü = (2ω1aV α1Nm(exp (βNmt)− 1) + βn0)cp/(f1β exp (βNmt)), (27)

where n0 is the initial density of dislocation walls or dipoles.
For further transformation of Eq. (27), we use the approximate equality exp (βNmt) ' 1+βNmt. In addition,

in the denominator of the equation, we set exp (βNmt) ' 1 (this assumption is confirmed by numerical calculation).
Then, taking into account that t = u/u̇, from Eq. (27) we obtain the equation

ü = (2N2
mV cpα1βω1au+ βn0cpu)/(f1βu̇). (28)

From the calculations it follows that in the examined range of shock velocities, f1u̇ ' −1 m/sec, and,
hence, (28) becomes the equation

ü+ 2hu̇+ ω0u = 0, (29)

where 2h = n0cp and ω0 = 2NmV cpα1ω1a.
As is known, if h2 < ω2

0 , Eq. (29) defines an oscillatory process. In our case, this condition is satisfied for

2NmV α1ω1a > n0/2, (30)

i.e., inequality (30) gives values of the parameters of the dislocation–disclination structure (Nm, V , α1, ω1, a, and
n0) for which the occurrence of oscillations of plastic flow is also possible.

Using parameter values typical of the processes considered, we estimate the probability of formation of a
wall nucleus α1. Let Nm = 1012 m−2, ω1 = 6 ·10−3, 2a = 0.2 ·10−6 m, V = 102 m/sec, and n0 = 107–108 [6]. Then,
condition (30) is satisfied for α1 > 10−9–10−8.

It should be noted that the role of the dissipative term in Eq. (29) is played by dislocation walls that were
available in the material initially or formed during heterogeneous multiplication of dislocations (during motion of
the elastic precursor). In the second version of development of internal processes in the material, oscillations of
the plastic wave front cease after the cellular structure has completely formed or after the walls, having reached
the critical density (n∗ ' 1011m−2 [13]), collapse into separate dislocations. In the first case, both the constitutive
equations of dislocation plasticity [14] and the conditions of dislocation motion and multiplication change.

The second statement is easy to verify. For this, we write the solution of Eq. (24):

N = (α1Nm(exp (βNmt)− 1) + βn0)/(β exp (βNmt)). (31)

Setting α1 = β = 10−7, Nm = 1012 m−2, and n0 = 107 m−2 and substituting these values and t = 0.15 µsec
into relation (31), we obtain the value n = 1.9 · 1011 m−2, which has the same order of magnitude as n∗. This
confirms that the assumptions adopted in constructing the model of occurrence of damped oscillations of the plastic
wave front are valid.
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